Algèbre linéaire Exemples

Trouver le déterminant [[e^x,e^(2x),e^(3x)],[e^x,2e^(2x),3e^(3x)],[e^x,4e^(2x),9e^3]]
Étape 1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Consider the corresponding sign chart.
Étape 1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 1.3
The minor for is the determinant with row and column deleted.
Étape 1.4
Multiply element by its cofactor.
Étape 1.5
The minor for is the determinant with row and column deleted.
Étape 1.6
Multiply element by its cofactor.
Étape 1.7
The minor for is the determinant with row and column deleted.
Étape 1.8
Multiply element by its cofactor.
Étape 1.9
Add the terms together.
Étape 2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 2.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Déplacez .
Étape 2.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2
Multipliez par .
Étape 2.2.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Déplacez .
Étape 2.2.4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.4.3
Additionnez et .
Étape 2.2.5
Multipliez par .
Étape 3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Déplacez .
Étape 3.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.2
Déplacez à gauche de .
Étape 3.2.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Déplacez .
Étape 3.2.4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.4.3
Additionnez et .
Étape 3.2.5
Multipliez par .
Étape 4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 4.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.2.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.2.1
Déplacez .
Étape 4.2.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.2.1.2.3
Additionnez et .
Étape 4.2.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.2.1.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.4.1
Déplacez .
Étape 4.2.1.4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.2.1.4.3
Additionnez et .
Étape 4.2.1.5
Multipliez par .
Étape 4.2.2
Soustrayez de .
Étape 5
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Appliquez la propriété distributive.
Étape 5.1.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.1.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.4.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.4.1.1
Déplacez .
Étape 5.1.4.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.1.4.1.3
Additionnez et .
Étape 5.1.4.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.4.2.1
Déplacez .
Étape 5.1.4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.1.4.2.3
Additionnez et .
Étape 5.1.5
Appliquez la propriété distributive.
Étape 5.1.6
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.1.7
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.1.8
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.8.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.8.1.1
Déplacez .
Étape 5.1.8.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.1.8.1.3
Additionnez et .
Étape 5.1.8.2
Multipliez par .
Étape 5.1.8.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.8.3.1
Déplacez .
Étape 5.1.8.3.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.1.8.3.3
Additionnez et .
Étape 5.1.8.4
Multipliez par .
Étape 5.1.9
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.1.10
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.10.1
Déplacez .
Étape 5.1.10.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.1.10.3
Additionnez et .
Étape 5.2
Soustrayez de .
Étape 5.3
Additionnez et .
Étape 5.4
Additionnez et .